TL-1 Use PSpice to find $\mathrm{V}_{\mathrm{i}}(t)$ and $\mathrm{V}_{\mathrm{o}}(t)$ for $0<t<8 \mathrm{~ns}$ in the circuit below when the oneway delay of the transmission line is:
a) $\mathrm{T}_{\mathrm{o}}=0.05 \mathrm{~ns}$
b) $\mathrm{T}_{0}=0.7 \mathrm{~ns}$

In both cases, estimate the duration of the load response using the "rule" that the waveform starts when it reaches 70% of its peak value, and is off when it stays below 10% of its peak value. (Hint: PSpice models transmission lines with the part " T ", which has parameters TD (one-way delay in seconds) and Z0 (characteristic impedance in Ohms).

TL-2 Analyze and plot $V_{i}(t)$ and $V_{\mathrm{o}}(t)$ for $0<t<4$ [ns]. Assume that the velocity of propagation on the transmission line is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

